Computing the bipartite edge frustration of fullerene graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The bipartite edge frustration of composite graphs

The smallest number of edges that have to be deleted from a graph to obtain a bipartite spanning subgraph is called the bipartite edge frustration of G and denoted by φ(G). In this paper we determine the bipartite edge frustration of some classes of composite graphs. © 2010 Elsevier B.V. All rights reserved.

متن کامل

The bipartite edge frustration of hierarchical product of graphs

The smallest number of edges that have to be deleted from a graph G to obtain a bipartite spanning subgraph is called the bipartite edge frustration of G and denoted by φ(G). In this paper our recent results on computing this quantity for hierarchical product of graphs are reported. We also present a fast algorithm for computing edge frustration index of (3, 6)−fullerene graphs.

متن کامل

On the bipartite vertex frustration of graphs

The bipartite vertex (resp. edge) frustration of a graph G, denoted by ψ(G) (resp. φ(G)), is the smallest number of vertices (resp. edges) that have to be deleted from G to obtain a bipartite subgraph of G. A sharp lower bound of the bipartite vertex frustration of the line graph L(G) of every graph G is given. In addition, the exact value of ψ(L(G)) is calculated when G is a forest.

متن کامل

Maximum Frustration in Bipartite Signed Graphs

A signed graph is a graph where each edge is labeled as either positive or negative. A circle is positive if the product of edge labels is positive. The frustration index is the least number of edges that need to be removed so that every remaining circle is positive. The maximum frustration of a graph is the maximum frustration index over all possible sign labellings. We prove two results about...

متن کامل

Edge-Coloring Bipartite Graphs

Given a bipartite graph G with n nodes, m edges and maximum degree ∆, we find an edge coloring for G using ∆ colors in time T +O(m log ∆), where T is the time needed to find a perfect matching in a k-regular bipartite graph with O(m) edges and k ≤ ∆. Together with best known bounds for T this implies an O(m log ∆ + m ∆ log m ∆ log ∆) edge-coloring algorithm which improves on the O(m log ∆+ m ∆ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2007

ISSN: 0166-218X

DOI: 10.1016/j.dam.2006.12.003